What is the Complexity of Related Elliptic , Parabolic , and Hyperbolic Problems ? By Arthur
نویسندگان
چکیده
TVaub and Wozniakowski have dealt with the complexity of some simple partial differential equations. They chose three model problems and showed that the parabolic problem considered had significantly lower complexity than the elliptic problem, which in turn had significantly lower complexity than the hyperbolic problem considered. They asked whether this is true in general. We show that this is not the case by proving that if L is a reasonably well-behaved elliptic operator, then the steadystate heat equation Lu = f, the heat equation dtu + Lu = /, and the wave equation dttu + Lu = f all have roughly the same worst-case complexity for / in the unit ball of a certain Sobolev space of smoothness r.
منابع مشابه
What is the Complexity of Related
TVaub and Wozniakowski have dealt with the complexity of some simple partial differential equations. They chose three model problems and showed that the parabolic problem considered had significantly lower complexity than the elliptic problem, which in turn had significantly lower complexity than the hyperbolic problem considered. They asked whether this is true in general. We show that this is...
متن کاملAnalytic solutions for the Stephen's inverse problem with local boundary conditions including Elliptic and hyperbolic equations
In this paper, two inverse problems of Stephen kind with local (Dirichlet) boundary conditions are investigated. In the first problem only a part of boundary is unknown and in the second problem, the whole of boundary is unknown. For the both of problems, at first, analytic expressions for unknown boundary are presented, then by using these analytic expressions for unknown boundaries and bounda...
متن کاملSingular limits for a parabolic-elliptic regularization of scalar conservation laws
We consider scalar hyperbolic conservation laws with a nonconvex flux, in one space dimension. Then, weak solutions of the associated initial-value problems can contain undercompressive shock waves. We regularize the hyperbolic equation by a parabolic-elliptic system that produces undercompressive waves in the hyperbolic limit regime. Moreover we show that in another limit regime, called capill...
متن کاملUniqueness of Entropy Solutions of Nonlinear Elliptic-Parabolic-Hyperbolic Problems in One Dimension Space
We consider a class of elliptic-parabolic-hyperbolic degenerate equations of the form b(u)t−a(u, φ(u)x)x = f with homogeneous Dirichlet conditions and initial conditions. In this paper we prove an L-contraction principle and the uniqueness of entropy solutions under rather general assumptions on the data.
متن کاملSome Common Asymptotic Properties of Semilinear Parabolic, Hyperbolic and Elliptic Equations
We consider three types of semilinear second order PDEs on a cylindrical domain Ω × (0,∞), where Ω is a bounded domain in N , N 2. Among these, two are evolution problems of parabolic and hyperbolic types, in which the unbounded direction of Ω × (0,∞) is reserved for time t, the third type is an elliptic equation with a singled out unbounded variable t. We discuss the asymptotic behavior, as t ...
متن کامل